从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

涡轮叶片是整个飞机“核心中的核心”

众所周知,航空发动机是整个飞机的核心所在,它的性能直接决定着飞机的整体性能,所以航空发动机也被称为“工业皇冠上的明珠”。而在航空燃气涡轮发动机中工作环境最为恶劣、应力最为复杂的就是涡轮叶片了,同时涡轮叶片也是航空发动机在尺寸小、重量轻的需求上获得高性能的关键之处。所以,如果说航空发动机是整个飞机的核心,那涡轮叶片则是整个飞机“核心中的核心”!

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

歼-20发动机尾喷口

对于航空发动机来说,温度的提升会带来热效率的提升的,相关研究表明,航空发动机涡轮前温度每提示55℃,在其他条件不变的情况下,发动机的推力可以提升10%左右。所以,在高性能航空发动机不断追寻大推力、高推重比的情况下,提升涡前轮温度自然成为了航空发动机大力发展的方向,而涡轮前温度的提升是要以高温下涡轮叶片材料性能(持久强度、蠕变强度、韧性、抗热疲劳等)的提升为基础的。

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

大涵道比涡扇发动机剖析图

不过,在航空发动机不断发展的过程中,涡前轮温度(叶片的工作温度)的发展速度是远快于涡轮叶片材料的承载温度的。以现在的技术水平来看,航空发动机中一个“裸”的涡轮叶片的承载温度最多也就是只有1100℃左右,而叶片的工作温度却已经达到了1700℃,两者相差能有如此之大也离不开涡轮叶片各种冷却技术的发展。

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

发动机涡轮部件结构与剖面图

高温合金的应用迎来涡轮叶片的第一次革命

航空发动机涡轮叶片材料的第一次革命始于高温合金的出现,在上世纪40年代第一块高温合金被研制出来,之后高温合金凭借其优异的高温性能全面代替曾经的高温不锈钢,并在上世纪50年代被应用到了第一代航空燃气涡轮发动机之上,此时高温合金涡轮叶片的使用温度达到了800℃,由于承载温度与工作温度相差不大,所以这那时的涡轮叶片还没有使用冷却技术。

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

航空发动机叶片

定向合金大幅提升叶片承载温度

到了上世纪60年代, 真空铸造技术的应用可以说就是高温合金发展史上最重大的事件之一,真空铸造大大减少有害于高温合金性能的杂质含量,提升了合金的纯净度,使得叶片的多种特性都得到提升。之后,为了解决合金中的“塑性低谷”问题,定向凝固合金技术也被发明了出来,因为定向凝固使合金的结晶方向平行于叶片的主应力轴方向,基本消除了垂直于应力轴的横向晶界,提高合金叶片的塑性和热疲劳性能。

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

不同工艺下的涡轮叶片性能对比

此时,采用定向铸造高温合金制造的涡轮叶片承载温度达到了1000℃(约合1273K),相比于上一代的高温合金有了约200℃的提升,并且在结合简单的叶片气冷却技术之后,第二代航空燃气涡轮发动机的涡轮前温度达到了1300K-1500K,航空发动机性能进一步提升。

第一代单晶合金+气膜冷却技术

在上世纪70年代,合金化理论和热处理工艺得到突破,此时的工艺可以在定向凝固合金的基础上完全消除晶界,单晶合金涡轮叶片制造技术由此诞生,也掀起了涡轮叶片所用材料的第二次革命,使得合金叶片的热强性能有了进一步的提高(约30℃),涡轮叶片的承载温度达到了1050℃(约合1323K)左右。

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

不同工艺叶片的微观对比

不过,第三代航空燃气涡轮发动机的要求也使得涡轮叶片的工作温度与承载温度进一步拉大,由此开始涡轮叶片的冷却技术得到重视。通过在叶片上设计冷却通道和冷却孔,然后把压气机里几百摄氏度的“低温气体”引到涡轮叶片内部,再从叶片表面的冷却孔中喷出来就形成一道气膜,拥有隔绝温度较低的涡轮叶片与其所在工作环境中的高温燃气,这也就是气膜冷却技术。

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

发动机叶片上的冷却孔特写

气膜冷却技术的应用,使得涡轮叶片的工作温度可以远大于叶片材料本身的承载的温度。所以在第一代单晶合金+单通道气膜冷却技术综合应用下,第三代航空发动机的涡轮前温度达到了1680K-1750K,推重比达到8的涡扇发动机开始出现(目前涡扇-10就处于这一代别)。

第二代单晶合金+复合冷却技术

到了上世纪末,第五代战机提出了“超音速巡航”的要求,发动机的推重比和推力需要进一步提升。第二代单晶合金通过增肌铼、钴、钼等元素,使得涡轮叶片合金的微观结构稳定性得到进一步提升,持久强度与抗氧化腐蚀能力达到了一个较好的平衡,使其承载温度再次提高了30℃左右,达到了1100℃(约合1370K)左右的水平。

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

涡轮叶片所用材料发展之路

此时,通过改善材料性能带来涡轮叶片工作温度的提升已经变得举步维艰,而单通道的气膜冷却技术也开始不够用了,多种冷却技术同时应用(对流、冲击式、气膜结构、发散冷却等)的复合冷却技术被研发了出来。目前通过对涡轮叶片进行复合冷却,可以使得叶片的工作温度(涡轮前温度)相比承载温度高出400K左右,达到1850K-1980K。

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

叶片冷却技术的发展

第二代单晶合金结合复合冷却技术的涡轮叶片,被应用到了目前主流第四代航空发动机之上(主要代表有F-119、EJ-200发动机)。

第三代单晶合金/陶瓷基复合材料+多通道双层空心壁冷却技术

目前,第六代战斗机研发已经被提上了日程,但有关第五代燃气涡轮发动机的信息还比较少,按照近些年在相关技术方面取得的突破来看,进一步优化合金元素成分而来的第三代单晶合金,和新型陶瓷基复合材料将成为第五代燃气涡轮发动机叶片的首选材料,其中陶瓷基复合材料的提升更为明显(承载温度可达1200℃,重量仅为镍基单晶合金的1/3),但技术尚不成熟。

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

各代发动机涡轮叶片发展

而在下一代涡轮叶片冷却技术方面,将进一步增加涡轮叶片内部中的冷却通道,使得叶片的散射更为均匀;采用双层空心壁冷却技术,在涡轮叶片双层夹板增加中空的结构,可以进一步提升冷却效率。由于多通道双层空心壁冷却技术的研究较为复杂,目前国内在这一方面的研究还相对较少。

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

给涡轮叶片涂涂层

航空发动机涡轮叶片发展的总结与展望

总的来说,航空发动机涡轮叶片材料的制造与优化是一个极其复杂的过程,需要大量试验才能找到最优、或者接近最优的成分配比;而涡轮叶片冷却方案优化则是建立在设计和制造的基础上的,涡轮叶片每一次的冷却技术优化也是对叶片设计、制造的巨大考验。所以,说一个单晶叶片的价格超过同重量的黄金是毫不夸张的。

从高温合金到单晶合金+复合冷却,看航空发动机叶片发展之路

GE展出的陶瓷基复合材料涡轮叶片

而从航空发动机涡轮叶片的发展历程来看,研发更加耐高温的涡轮叶片是提升发动机性能的关键所在。而经过数十年的发展,单晶合金叶片的潜力似乎已经挖掘殆尽,想要进一步提升航空发动机性能,寻找新的方向已成为发展涡轮叶片不得不面对的选择;航空发动机涡轮叶片冷却技术虽然还有着不小的优化空间,但无疑会进一步增加叶片的加工制造难度。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

此站点使用Akismet来减少垃圾评论。了解我们如何处理您的评论数据